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ABSTRACT

Video captioning is the most challenging Artificial Intelligence problem regarding

the generation of natural language phrases explaining video frames’ contents. It re-

quires both understandings of images from Computer Vision (CV) domains and lan-

guage model from Natural Language Processing (NLP) domains. The video captioning

task remains a complicated one because of the difficulties of detecting objects and their

activities from a video or sequence of frames to generate captions. It is then complicated

for the language generation models to produce accurate captions from the videos. It

becomes more challenging when captions are rendered in complicated languages like

Bengali. There is no compatible model for Bengali caption generation, which directed

us to work in this novel field of Video Captioning in Bengali. In this work, We have

proposed an encoder-decoder based novel deep architecture which incorporates a com-

bination of 2D-CNN as well as 3D-CNN as the encoder and Bi-LSTM as the decoder. We

have trained and evaluated our model on the MSVD dataset and achieved a 30% and

20% score on BLEU and CIDEr, respectively. There is no such way to compare our work,

as there is no previous work in this field. So, by far, we can claim our work a new start

and the best one in this arena till now.
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Chapter 1

Introduction

1.1 Overview

The future development of artificial intelligence needs extensive factors that can help us

understand the rich visual world around us and make communication easier for machines

through natural language. With the advancement of computer technology in the recent era,

significant steps have been taken toward this goal in the last few years. With the advance-

ment of algorithms and data gathering, the concept of “Automatic Video Captioning” has

gained much popularity among the researchers, where computer systems can describe the

events or activities in the video in natural language while the video is being played. As

videos have been the most effective tool for information storage, security surveillance, ac-

tivity tracking, and many other actions, captions generated in natural language can be the

most significant in analyzing the collected data. Generated natural language captions can

have more significant social impacts if the captions are rendered in the native languages of

different users, which leads to the task of video captioning in Bengali as Bengali being the

7th [1] largest spoken language and the first or second language of over 230 million [2]
people across the world. As Bengali is a very complicated language and the field of video

captioning in Bengali is yet unexplored, it is very challenging to propose a model or system

that will generate captions in Bengali with considerable accuracy. The complete vacuum of

research works Bengali video captioning, and the importance of Bengali caption generation

calls for a compatible method to generate video captions in Bengali.

1.2 Motivation

Video is now the most preferred means of data collection in enormous fields like activity

tracking, security surveillance, etc. If the generated captions from videos are improved to a
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supreme level, this system can provide direction to visually impair peoples. The system can

analyze videos in real-time directly from cameras and generate text about the surroundings,

which will then be converted to audio to provide directions to visually impaired persons

[3]. With captions in Bengali, people with Bengali as their only language can also get

benefited. Robotics nowadays has reached such a stage where human-robot interaction is

needed simultaneously. We need robots to express their vision in natural language so that

humans can understand their way of processing [4]. However, searches on videos have not

been conducted in such a way to simplify the interaction process. Generating text from

videos can be an outstanding contribution to the field of human-robot interaction. Even

this system can be perfected at such a level where machines can generate instruction set

for humans. Then again, captioning a video in Bengali can make learning easier for people

using Bengali as their mother tongue. Another application of the system can be converting

sign language into natural language or text, which will help people with a hearing problem

communicate with normal people [3]. In media (movies, theaters), videos are made or

captured according to the script or text document. Text documents can be an excellent

alternative to video data in keeping records of the activity only. This procedure can also be

used for surveillance cameras as a large amount of storage is needed to store the videos.

This process can save a lot of storage space by keeping the videos’ information as text if

captions are perfected supremely. Again, it is impossible for humans to always sit in front of

monitors to check security footage for vulnerable or suspicious activities in secured areas.

If video captioning is perfected satisfactorily, a real-time warning system can be prepared

based on the video footage from the CCTVs as computers often surpass humans in object

classification fields. It can be a significant contribution to the nationwide security system.

1.3 Objective

The main objective of this thesis work is to build a model that can extract visual features

from consecutive video frames and generate natural language captions in Bengali based on

the visual features, which includes objects and their spatio-temporal information. As the

area of video captioning in the Bengali language is hardly touched, the first task was to

select an adequate dataset depending on the videos on a variety of activities and prepare

it for the task of captioning in Bengali. Acknowledging that no research work is available

regarding video captioning in Bengali, we started to learn from the previous works on video

captioning in English. We tried to collect some state-of-the-art methods for our Bengali cap-

tion generation model based on those works for object detection, spatio-temporal feature

extraction, and language generation tasks. With this step’s continuation, we tried out dif-

ferent combinations of object detection, spatio-temporal feature extraction, and language

generation methods to face the challenge of video captioning in Bengali. Finally, depending
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on the analysis based on the collected results from different combinations of methods, we

proposed an efficient model gathering all the state-of-the-art methods for the tasks stated

above, leading to a proper Bengali caption generation system.
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Chapter 2

Literature Review

2.1 Overview

A lot of works has been done in recent years in the field of computer vision. A vast portion of

these works includes different classification, description generation, and caption generation

tasks from videos. But, the Bengali caption generation field is yet untouched, and no re-

search work exists on this task. The only available works are on Bengali caption generation

from images, but the number is deficient [5] [6] [7]. So, we have explored a good number

of existing works of recent times on video captioning in English along with image captioning

in Bengali and analyzed their working procedures to get a good idea of different parts of a

whole model. To get a systematic review of the works, we have emphasized the fundamen-

tal changes made in the main architecture to improve the results of video captioning tasks.

In this chapter, we have thoroughly discussed these papers and their working procedures

related to video captioning n English and Image captioning in Bengali to get predictions of

different methods to be used for our Bengali video captioning task.

2.2 Reviews of Related Papers

Pan et al. [8] presented a deep architecture that incorporates transferred semantic attributes

learnt from images and videos into the CNN-RNN framework. Images and videos carry com-

plementary semantics and thus can reinforce each other for captioning.

Working Approach:

• The video representation is produced by mean pooling over the visual features of

sampled frames extracted by a 2-D/3-D CNN.
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• Attributes from images are learnt by adopting the weakly-supervised approach of Mul-

tiple Instance Learning (MIL).

• A video MIL model is particularly devised to learn attributes from videos.

• The video representation is injected into LSTM only at the initial time.

• Attributes representations from images and videos are fed as the additional inputs into

the second-layer LSTM unit.

• A transfer unit is devised to dynamically fuse them into LSTM.

Wang et al. [9] proposed Hierarchical reinforcement learning (HRL) framework for video

captioning, where a high-level Manager module learns to design sub-goals. and a low-level

Worker module recognizes the primitive actions to fulfill the sub-goal.

Working Approach:

• HRL framework follows the general encoder-decoder framework.

• In the encoding stage, video frame features are first extracted by a pretrained convo-

lutional neural network (CNN).

• Frame features are passed through a low-level Bi-LSTM encoder and a high-level LSTM

encoder successively to obtain low-level encoder output and high-level encoder out-

put.

• In the decoding stage, HRL agent plays the role of a decoder, and outputs a language

description.

• The HRL agent is composed of three components: a low-level worker, a high-level

manager, and an internal critic.

• Manager operates at a lower temporal resolution and emits a goal, worker generates a

word for each time step by following the goal, internal critic determines if the worker

has accomplished the goal.

An encoder-decoder reconstruction architecture is proposed by Wang et al. [10]where CNN

is used as encoder and LSTM+GRU is used for decoder part. This paper shows a possibility

of backward flow (sentence to video). LSTM and GRU generates sentence fragmentation

one by one and assemble them to generate sentence.

Working Approach:
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• CNN architecture Inception-V4 is used as the encoder for representation of the video

sequence.

• LSTM with the capabilities of modeling long-term temporal dependencies are used to

decode video representation to video captions word by word.

• To exploit the global temporal information of videos, a temporal attention mechanism

is employed for the decoder to select the key frames/elements for captioning.

• Backward Flow is done through Neural Machine Translation (NMT) mechanism and

image segmentation.

• NMT reconstructs the source from the target when the target is achieved.

Dense video captioning involves localizing distinct events in a long video stream, and gener-

ating captions for the localized events. Xu et al. [11] proposed a model- Joint Event Detec-

tion and Description Network (JEDDi-Net) which encodes input video stream and proposes

variable-length temporal events based on pooled features. A two-level hierarchical caption-

ing module keeps track of context of temporal relationships between visual events and their

captions in a single video.

Working Approach:

• 3D convolutional network (C3D) architecture is employed to encode the input frames

in a fully-convolutional manner.

• Segment Proposal Network (SPN) predicts the activity proposals’ start and end times.

• To compute a visual representation of each proposed event for the captioning module,

predicted proposals are encoded into feature vectors.

• To model context between the generated caption sentences, a hierarchical LSTM struc-

ture is adopted.

• The high-level Controller LSTM encodes the visual context and sentence decoding

history.

• The low-level Captioning LSTM decodes every proposal into a caption word by word.

Junchao Zhang and Yuxin Peng [12] proposed Attention Guided Hierarchical Alignment

(AGHA) approach which exploits multi-level vision-language alignment information and

multi-granularity visual features to boost the accurate generation of video captions. Vision-

language alignments includes object-word, relation-phrase and region-sentence alignments.

Working Approach:
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• First, multi-granularity visual features including global features, as well as region spe-

cific, relation-specific, and object-specific features are extracted.

• The features are extracted using convolutional neural network architecture - GoogLeNet

with Batch Normalization that is pre-trained on ImageNet dataset.

• These features are then fed into three parallel encoder-decoder streams.

• All three streams have the same structure that includes an attention-based encoder

and an alignment-embedded decoder.

• Finally, the hierarchical alignments from three streams are integrated to obtain the

description sentence.

Ding et al. [13] have proposed techniques are for the application of long video segmenta-

tion, which can effectively shorten the retrieval time.

Working Approach:

• Primary task is to detect and remove the redundant frames by using STIPs in the stage

of processing video frames.

• After redundant video frames have been screened, the long video is segmented by

using non-linear combination of different visual elements.

• During key frame selection, the region of interest is constructed by using the STIPs

that is obtained in the previous part directly.

• Finally, LSTM variant model that is combined with attention mechanism used for cap-

tion generation.

Yan et al. [14] have proposed Spatial-Temporal Attention Mechanism (STAT), that takes into

account both the spatial and temporal structures in a video, so it makes the decoder to au-

tomatically select the significant regions in the most relevant temporal segments for word

prediction.

Working Approach:

• Overall framework is based on the popular convolutional neural network (ConvNet)

+ LSTM architecture.

• 2-D/3-D Convolutional Neural Network (CNN) and Region-based Convolutional Neu-

ral Networks (RCNNs) are used to encode the video inputs to a set of fixed length

vector representation.
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• CNN such as GoogleNet can represent an image as a single feature vector. 3-D CNN

such as C3D can represent consecutive frames as a single feature vector. R-CNN such

as Faster R-CNN can represent a region or object as a single feature vector.

• Three kinds of features are fused via two-stage attention mechanism.

• Spatial attention mechanism firstly makes the decoder to select local features with

more spatial attention weights, which represent the significant regions.

• Temporal attention mechanism makes the decoder to select global and motion fea-

tures.

Park et al. [15] have proposed a multi-discriminator “hybrid” design, where each discrimi-

nator targets one aspect of a description.

Working Approach:

• Adversarial Inference for video description progressively sample sentence candidates

for each clip, and select the best ones based on a discriminator’s score.

• A “hybrid discriminator” is proposed which combines three specialized discriminators:

one measures the language characteristics of a sentence, the second assesses its rel-

evance to a video segment, and the third measures its coherence with the previous

sentence.

• The proposed approach to multiple baselines is compared on a number of metrics, in-

cluding automatic sentence scores, diversity and repetition scores, person correctness

scores.

Rahman et al. [16] have aimed to outline an automatic image captioning system in Bangla,

called ‘Chittron’. This model is trained to predict the caption when the input is an image,

one word at a time.

Working Approach:

• The model has been trained on 15,700 images from the collected data set. Three

hundred (300) images are considered as the test data.

• The model has two inputs: the first is the image itself, and the second is a sequence

of tokens.

• After generating corresponding word embedding from tokens by embedding layer,

these embedding form the sequence data input for the stacked LSTM layers.
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• VGG16 model, slightly adjusted, has been used as the pre-trained image model.

• Stacked LSTM layers have been used in one-word-at-a-time strategy to predict caption.

Deb et al. [7] have addressed a standard approach for Bengali image caption generation

through subsampling the machine-translated dataset.

Working Approach:

• Google Translate has been employed to adapt the translation process

• To overcome ambiguous words, including actual context understanding gap, a Bengali

rule based stemmer has been used.

• Pre-trained Inception-ResNet and VGG-16 models have been used for images’ feature

extraction.

• FastText library’s models have been utilized for pre-trained word embedding. Authors

also have introduced a pre-compiled word embedding model to facilitate the word

representation process.

Kamal et al. [6] have developed a system namely, ‘TextMage’ that is capable of understand-

ing visual scenes that belong to the Bangladeshi geographical context and use its knowledge

to represent what it understands in Bengali.

Working Approach:

• ‘BanglaLekhaImageCaption,’ a dataset previously developed and published by the same

author of this paper, has been used to train the model.

• VGG16 has been utilized for image feature extraction

• CNN has provided necessary feature vector as the encoder

• LSTM has been used as a language model to create textual descriptions from given

data images.

Jishan et al. [5] have proposed a deep neural network-based image captioning model to

generate image description. It has been claiming to generate pertinent descriptions based

on the modular complexities of an image.
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• A full dataset has been classified by utilizing CNN and VGG16 highlights.

• The model has implemented Conv2D features with the Maxpooling 2D and ReLU ac-

tivation function.

• It has been defined as 256 filters in the LSTM and set dropout value 0.2 to generate a

caption for input image.

Pei et al. [17] proposed the Memory-Attended Recurrent Network (MARN) for video cap-

tioning,to over come the issue of not capturing multiple visual context information of a word

appearing in more than one relevant videos.

• It comprises of three components: an encoder, a recurrent attention-based decoder,

and an attended memory decoder.

• Due to its outstanding performance and relatively high cost-efficiency, the authors

select ResNet-101 pretrained on imagenet as the 2D-feature extractor of the encoder.

The ResNeXt-101 with 3D convolutions pre-trained on the Kinetics dataset is used to

extract 3D features.

• As the backbone of the decoder, a recurrent neural network is used to generate the

caption word by word due to its powerful ability to model the temporal information

by the recurrent structure.

• To vastly improve the quality of the generated caption by the Attention-based Re-

current Decoder, an Attended Memory Decoder has been proposed as an assistant

decoder.

• LSTM has been replaced by GRU as the Attended Memory Decoder.

Zhang et al. [18] proposed a video captioning framework which integrates with task-driven

dynamic fusion replacing different static fusion methods and providing vast improvement

in video captionig field.

• This paper conducts the first in-depth analysis of the weakness inherent in video cap-

tioning data-driven static fusion methods.

• According to model status, the proposed model can select various fusion patterns

adaptively.
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• VGG-19 and GoogLeNet-bu4k for visual features, C3D pretrained on Sports-1M video

dataset for motion features extraction.LSTM is used as language model.

• These features and model status are inputs to TDDF unit. A dynamic visual input is

provided by the TDDF unit for each iteration of the LSTM decoder.

A novel architecture, namely Semantically Sensible Video Captioning (SSVC), was proposed

in this paper [19], which is simply a combination of two novel approaches - "stacked atten-

tion" and "spatial hard pull" - on top of a base video-to-text architecture to produce captions

from video sequences to alter the process of context generation. A time-distributed fully

connected layer which is comprises of double LSTM layers with stacked attention; followed

by two consecutive bidirectional LSTM layers is used in the proposed process. The fully

connected layer operates independently on each frame and then its output transfers to the

LSTM layers that works as language model.

A brand new subject of collaborative image captioning with humans in the loop is discussed

in this paper. In the interactive scenario, we have access to both the test image and a se-

quence of (incomplete) user-input sentences, unlike automatic image captioning, where a

given test image is the sole input in the inference stage. The problem is formulated as Vi-

sually Conditioned Sentence Completion (VCSC). For VCSC, for image caption completion,

asynchronous bidirectional decoding (ABD-Cap) [20] has been proposed.iCap with ABD-

Cap as the core module, a web-based interactive image captioning framework has been

developed, that can predict new text with respect to a user’s live feedback. The feasibility of

our ideas is shown by a variety of tests covering both automated assessments and individual

user studies.
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Chapter 3

Background Study

3.1 Convolutional Neural Network

In deep learning, Convolutional Neural Network (CNN) is an advanced feed-forward artifi-

cial neural network used for image classification and recognition tasks. It is an architecture

similar to multi-layer perceptron, which works with supervised data and decides whether

a particular value belongs to a class or not. But perceptron is not regularized because of

data over-fitting. CNN regularizes data by adding wights to the loss function. CNN is a

combination of neurons that have weights and biases, which can be changed based on the

learning of the CNN model. Each neuron receives some inputs and executes a dot product,

with non-linearity being an optional part. The layers are divided into three dimensions:

height, width, and depth.

The basic architecture of CNN is a combination of different layers like input layer, convo-

lution layer, pooling layer, fully connected layer and output layer which is shown in Figure

3.1.

• Input Layer: It is the very first layer of a CNN where the neurons take inputs and

provide to the system for specific tasks. The weights and biases of the neurons in this

layer are initiated randomly. All the neurons of this layer are connected to the neurons

in the next layer.

• Convolution Layer: It is a core component of the CNN which does most of the works.

This layer contains a set of small filters or matrices to be more specific, which slides

through the height and width of the input volume. All the convolution layer executes

convolution operation, which is a two-function mathematical operation (f and g), and

it generates a third function (Equation 3.1). The convolution operation of f and g is

denoted as f*g. After one is reversed and moved, it is known as an integral part of

the two functions’ product. This operation is a specific type of integral transforma-
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tion [21].

( f ∗ g)(t) =

∫ ∞

−∞
f (τ)g(t −τ)dτ (3.1)

• Pooling Layer: This layer is usually used after the convolution layer. This layer exe-

cutes a different kind of pooling operations and reduces the size of the input in order

to minimize parameters as well as the computational steps. The pooling task is done

by calculating the summary of a region of fixed size. The summarizing is done by

taking maximum value, minimum value, an average value or by means of any math-

ematical calculation. Depending on the method of summarizing, there are different

pooling functions like Max Pooling, Min Pooling, Average Pooling and so on.

• Fully Connected Layer: Like the neural network, every neuron in this layer is con-

nected to the neurons of its previous layer. Its activation is also computed by matrix

multiplication with its weight followed by bias as like neural network. Usually, a fully

connected layer forms a column vector of the same size as the output class.

Figure 3.1: Basic Architecture of Convolutional Neural Network (CNN) [22]

3.1.1 2D CNN

When it is talked about Convolutional Neural Network (CNN), it is generally referred to

as two dimensional CNN, mainly used on image data. This type of CNN is known as 2D

CNN or Conv2D. Based on the dimension of the utilized convolutional kernal, CNNs can be

categorized into three, and 2D CNN is one of them. Since 2D CNNs use 2D convolutional

kernels that slide along two dimensions of the data, it is called two dimensional CNN. A

basic model architecture is depicted in Figure 3.2.

A 2D convolution layer means that the convolution operation’s input is three-dimensional,

such as a color picture with a value across three layers for each pixel: red, blue and green.
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Figure 3.2: Model architecture of a standard 2D CNN. [23]

However, it is called a "2D convolution" since the filter’s movement through the image occurs

in two dimensions. Three times, once for each of the three layers, the filter is run across the

image. The full benefit of using CNN is that it can use its kernel to extract spatial features

from the data, which other networks can not do. For example, in the image, CNN can detect

edges, color distribution, etc., making these networks very robust in image classification and

other related data containing spatial properties.

3.1.2 3D CNN

Another type of CNN is three dimensional CNN, usually known as 3D CNN or Conv3D. In

order to improve the identification of moving and 3D images, 3D CNNs are created, espe-

cially the 3D activation map constructed during the convolution of a 3D CNN is essential to

analyze data where volumetric context is significant. Moreover, the time dimension is also

very crucial. This third dimension is time in videos, which are as like as several pictures

stacked together. Again, the height or number of layers, such as the layered image structure

of an MRI scan, may also be used. In both cases, the third axis binds the two-dimensional

sections intrinsically together and can thus not be ignored. 3D CNN tackles this case.

A 3-dimensional filter is applied to the dataset by 3D convolutions and the filter moves in

3-direction (x, y, z) to measure the representations of the low level feature. A 3-dimensional

volume space such as a cube or cuboid is their output form. They are useful in the identi-

fication of events in videos, 3D medical images, etc. They are not limited to 3d space, but

can also be applied, such as images, to 2d space inputs.

3.1.3 VGG 19 Model

VGG-19 is a modified version of VGG Net, a pre-trained CNN model first introduced by Si-

monyan and Zisserman from Visual Geometry Group (VGG) [24]. VGG-19 has been trained

on ImageNet dataset [25]. This VGG variant consists of 19 layers, mainly including 16 con-

volution (Conv) layers and three fully connected (FC) layers. It also has five max-pooling
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Figure 3.3: Basic architecture of VGG-19 model. [26]

layers and one softmax layers. All the layers are shown in Figure 3.3. The overall architec-

ture is described here:

• This model takes the image of size 224x224 are used as input. The first two layers

(convolution layers) use 64 filters with window-size of 3x3 and stride of 1 (Figure

3.3). So, the output size from the 2nd layer becomes 224x224x64.

• 3rd layer is a pooling layer which reduces the size down to 112x112x64.

• 4th and 5th layers are again convolution layers with 128 filters with the same window-

size as previous layers. Now the output dimension will be 112x112x128. 6th layer is

a pooling layer reducing the dimension to 56x56x128.

• 7th, 8th, and 9th layers are two convolution layers with 256 filters followed by a

pooling layer.

• Layers from 10th to 19th have eight convolution layers of 512 filters and two pooling

layers.The 19th layer outputs vector of dimension 7x7x512 (Figure 3.3).

• The input size for fully connected (FC) layer with 4096 units is 7x7x512 which is con-

verted into a 1000 dimensional vector representing probability value for 1000 classes.
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Figure 3.4: Side by side comparison of a single layer ResNet Block (Left) and a single layer
ResNeXt block (Right). [28]

3.1.4 ResNeXt-101 Model

The ResNeXt architecture is a modified version of a CNN based model, Deep Residual Net-

work (ResNet) [27]. ResNeXt-101 model is trained on ImageNet-5K dataset [28]. Explicitly,

ResNeXt-101 model follows a three-step process- split, transform, and merge. In deep neural

networks, the computational cost is very high, which is why ResNeXt-101 models represent

the full input feature into some lower dimension of input block similar to ResNet blocks

(Figure 3.4) and perform convolution which performs better and faster than executing con-

volution on the big input feature like all other neural networks. In the end, all the results

are merged together. The detailed architecture(Figure 3.5) of a whole ResNeXt-101 model

is here:

• First convolution layer (Conv1) has 64 filters with window-size of 7x7 and stride of

2. This layer output vector with dimension 112x112.

• Next layer is a max-pooling layer of size 3x3 and stride 2. The pooling layer transfers

the output to three consecutive ResNeXt Block known as Conv2 layers shown in Figure

3.4 with the cardinality of 32. The output of the conv2 layer has 56x56 dimensions.

• The output of the conv2 layer goes through conv3 layer consisting of four ResNeXt

Blocks. This process goes on upto conv5 layer. The conv5 layer outputs vectors of

dimension 7x7.

• The 7x7 vector goes through the average pooling layer.

• The output from the average pooling layer goes as input of fully connected (FC) layer

of 1000 dimension, and the output is 1x1 vector.
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Figure 3.5: Full architecture of ResNeXt model. [29]

3.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is another type of Neural Network that takes decisions

not only based on the current step but also the previous step. Both the inputs and outputs

are independent of each other in traditional neural networks, but in cases such as when

it is vital to predicting the next word of a sentence, the previous words are needed, and

so the previous words need to be remembered. RNN thus came into use, which with the

support of a Hidden Layer, solved this problem. Hidden State, which recalls some details

about a sequence, is the main and most significant feature of RNN. A basic structure of RNN

is shown in Figure 3.6

Figure 3.6: Basic Architecture of Recurrent Neural Network (RNN) [30]

By giving all layers the same weights and biases, RNN transforms the independent activa-

tions into dependent activations, reducing the difficulty of increasing parameters and mem-

orizing each previous output by giving each output to the next hidden layer as an input.

Therefore all three layers can be merged into a single recurrent layer such that the weights

and biases of all the hidden layers are the same. Because of the training through these

hidden layers, the RNN performs so fascinatingly in the case of sequential data. A simple

pictorial representation of these training steps among recurrent layers is shown in Figure

3.7

The network is provided with a single time step for the input. Then the current input set

is used and the previous state to determine the current state. For the next time step, the

current ht becomes ht-1. According to the problem, one can go as many time steps and join

the previous states’ data. Upon completion of all time steps, the final current state is used



3.2. RECURRENT NEURAL NETWORK 18

Figure 3.7: Backpropagation steps among Recurrent Layers [31]

to measure the output. Compared to the real output, i.e., the target output, the output is

then produced, and the error is generated.

3.2.1 Long Shot-Term Memory (LSTM)

Long Short-Term memory is a special kind of RNN which resolves the lacking of long term

dependency problems. Which means, this model is capable of learning long dependencies

allowing it to learn long information. For example, previous state-of-the art methods of neu-

ral networks struggled to learn for connecting the recent past information and the present

task if the gap between these two grows. But LSTM can perfectly handle the situation [32].
For this reason, LSTM is widely used as language model.

Like regular RNN, LSTMs also have a chain-like structure, but the repeating module chain

has a different structure. There are four layers instead of a single neural network layer,

interacting uniquely. The cell state, a horizontal line running down the entire chain, with

only some slight linear interactions, is the key to LSTMs (Figure 3.8). It’s effortless for data

to only flow unchanged across it.

The LSTM has the capacity, carefully controlled by structures called gates, to remove or add

information to the cell state. Gates are an optional way of allowing data to move through.

An LSTM has three types of gates; namely, Input Gate, Forget Gate, Output Gate.

• Forget Gate: A forget gate (Figure 3.9) is responsible for pulling out details from
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Figure 3.8: Basic Architecture of Long Short-Term Memory (LSTM) [33]

Figure 3.9: Forget gate of LSTM [34]

the cell state. By multiplying a filter, the information that is no longer needed for the

LSTM to understand things or information that is of less value is removed. This is

required for the efficiency of the LSTM network to be optimized. As depicted in the

Equation 3.2, this gate takes in two inputs; ht−1 and xt . ht−1 is the hidden state from

the previous cell, or the output of the previous cell and xt is the input at that particular

time step.

ft = σ(Wf ∗ [ht−1, x t] + b f ) (3.2)

• Input Gate: For the addition of information to the cell state, the input gate (Figure

3.10) is responsible. This data addition is essentially a three-step operation. Firstly,

by involving a sigmoid function, controlling what values need to be added to the cell

state. As shown in the Equation 3.3 and Equation 3.4, this is very similar to the

forget gate and acts as a filter for all ht−1 and xt data. Secondly, creating a vector

that includes all possible values that can be added to the cell state. This is achieved

using the tanh function, which outputs values ranges between -1 and 1. And finally,
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Figure 3.10: Input gate of LSTM [34]

multiply the value of the regulatory filter (sigmoid gate) to the generated vector (tanh

function) and then through the addition operation, add this useful information to the

cell state.

it = σ(Wi ∗ [ht−1, x t] + bi) (3.3)

eCt = tanh(Wc ∗ [ht−1, x t] + bc) (3.4)

• Output Gate: The output gate performs the job of selecting useful information from

the current cell state and presenting it as an output. The activity of an output gate

(Figure 3.11) can be split into three steps again and the required two equations are

3.5 and 3.6. First of all, after applying the tanh function to the cell state, constructing

a vector, and scaling the values to the range of -1 to +1. Next, developing a filter

using the ht−1 and xt values so that the values that need to be output from the vector

generated above can be managed. Once again, this filter employs a sigmoid function.

Thirdly, multiplying the value of this regulatory filter to the vector generated in step

1, and sending it out to the next cell as an output, as well as to the hidden state. The

ot = σ(Wi ∗ [ht−1, x t] + bo) (3.5)

ht = ot ∗ tanh(Ct) (3.6)

3.2.2 Bidirectional LSTM

A Bidirectional LSTM, or biLSTM, is a model of sequence processing consisting of two

LSTMs: one in the forward direction of the input and the other in the backward order.
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Figure 3.11: Output gate of LSTM [34]

Figure 3.12: Basic Architecture of Bidirectional LSTM [30]

BiLSTM looks precisely the same as its unidirectional counterpart. The main difference lies

in its purpose. The Bi-LSTM aims to look at a specific sequence from both front-to-back and

back-to-front. Consequently, it effectively increased the amount of information available to

the network, improving the context available to the algorithm. In this way, especially in the

case of the language model, for each character in the text, the network generates a meaning

that depends both on its past and its future. BiLSTM has three gates in total, from which,

two of them are similar to unidirectional LSTM, and a new one namely update gate, and its

Equation is 3.7.

Γu = σ(Wu[a
<t−1>, x<t>] + bu) (3.7)



3.3. WORD EMBEDDING 22

Figure 3.13: Example of word embedding: similar word being close to each other. [35]

3.3 Word Embedding

Word embedding is a crucial component for accurate results in the field of Natural Language

Processing (NLP). A language model needs to learn similar words based on similar contexts

which would allow the model to generate proper and meaningful sentences using near cor-

rect words. Word embedding enables a model to do so by assigning numbers to each word

in a way that similar words are in the same clusters and other words are at different dis-

tances based on the relations between the words (Figure 3.13).

Machine Learning (ML) or Deep Learning (DL) models are mostly unable to take raw text

data as input because the neurons in deep leaning or the machine learning layers deal with

numbers and outputs some numbers. In the simplest form word embedding, a word is rep-

resented with a vector called "One-hot Vector". If the vocabulary size is N, the one-hot vector

will have length N, and according to the position of a word, only one value of the vector

will be one and rest of them will be zero.

3.3.1 Word2Vec

Word to Vector or Word2Vec is a trendy word embedding approach in Natural Language

Processing. It was developed by a team in Google, led by Tomas Mikolov [36]. The task of

Word2Vec is achieved through two models: Continuous Bag-of-Words Model (CBOW) and

Continuous Skip Gram .

• Continuous Bag-of-Words Model: The input of the CBOW model is the context of

each word in the vocabulary, and depending on that; it tries to predict the correspond-

ing word according to the context [36]. CBOW represents the occurrence of words

in a text document. This model discards any information related to the structure or
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Figure 3.14: Basic architecture of Continuous Bag-of-Words (CBOW) model with one con-
text word. [35]

order of any word and deals with whether a word occurs in the document or not. We

can have a good of the basic architecture of CBOW model from Figure 3.14. Let’s

assume, a context or document has V. If a single word is given to predict next word,

the model will have a one-hot encoded vector of length V. The hidden layer will have

any number of neurons, N < V and the output layer will again be a vector of V length

having all the softmax values.

• Continuous Skip Gram Model: This model is very much similar to the architecture

of CBOW model. Continuous Skip Gram model is one of the unsupervised learning

methods which predicts the words surrounding a given input word where CBOW pre-

dicts only the next word. This model executes all the works with a view to maximizing

the classification of a word depending on other words in the sentence [36]. The dot

product of the input word w(t) and the weight matrix in the hidden layer or projection

layer is calculated which is the output of projection layer. The layers are shown in Fig-

ure 3.15. The projection layer has no activation function. The output of the projection

layer is transferred to the output layer where the output layer again computes the dot

product of the output of the projection layer and the wight matrix in the output layer.

At last, softmax of all the values are computed to get the word prediction.

3.3.2 FastText

FastText [37] is a lightweight library created by Facebook’s AI Research (FAIR) lab aiming

for efficient learning for text representation as well as text classification. The architecture

consists of three layers, input layer, hidden layer, and output layer as shown in the Figure

3.16. It is written in C++ and allows both supervised and unsupervised learning for obtain-
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Figure 3.15: Basic working principle of Continuous Skip Gram model. [36]

Figure 3.16: Model architecture of FastText for N n-gram features. [38]

ing word embeddings. FastText uses negative sampling, softmax or hierarchical softmax loss

functions to enable the training of continuous Bag-of-Words (CBOW) or Skip-gram models.

FastText consists of pre-trained models that are trained on Wikipedia and over 150 differ-

ent languages. To overcome the limitations of Word2Vec, such as Out of Vocabulary (OOV)

words, Morphology etc., [37] have proposed FastText. The FastText algorithm is also vastly

inspired by [38].

3.3.3 GloVe

GloVe [39] stands for “Global Vectors”. GloVe is an algorithm for unsupervised learning to

obtain vector representations for words. To come up with word vectors, GloVe gathers both

global statistics and local statistics of a corpus. Training is carried out on these aggregated

global word-word co-occurrence statistics from a corpus, and the resulting representations

show interesting linear substructures of the word vector space. Generally, the GloVe algo-

rithm can be splited into the following three tasks:

• Representing word co-occurrence statistics in the form of a word co-occurrence matrix,

named X. Each element, Xi j of this matrix, X represents how often word i appears in
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context of word j. The corpus should be scanned in the following manner: for each

term, context terms are being looked for within some area defined by a window-size

before the term and a window-size after the term. Also, more distant words are being

assigned less weight using the following Equation 3.8;

deca y = 1/o f f set (3.8)

• For each word pair soft constraints must be defined using the following Equation 3.9

wT
i + bi + b j = log(X i j) (3.9)

• A cost function need to be defined like the Equation 3.10.

J =
V
∑

i=1

V
∑

j=1

f (X i j)(w
T
i w j + bi + b j − logX i j)

2 (3.10)
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Chapter 4

Proposed Methodology

4.1 Overview

To generate Bengali captions from videos, we have used different deep learning models

and architectures. For extracting both spatial and temporal features from the videos, we

have used both 2D and 3D convolutional neural network (CNN) models such as VGG-19

and ResNeXt-101, respectively. For embedding the words of the captions, we have used

three embedding methods, namely, FastText, Glove and Word2Vec. In all these models, we

have leveraged the advantage provided by transfer learning by using pre-trained models

using large datasets. In the encoder and decoder, we have used the sequential model such

as Bidirectional Long Short-Term Memory (Bi-LSTM) and two-layer LSTM, respectively, to

generate the captions (Figure 4.1).

4.2 Pre-processing

Pre-processing is an important step to make the data contained in the dataset understand-

able by the learning architecture. It is the step before the data are being fed into the model.

Pre-processing discards the unnecessary information contained in the dataset and extracts

only the useful information needed for the model.

The dataset consists of two kinds of data. They are - the videos and their respective captions.

To make the videos and captions useful for feature extraction and embedding respectively

pre-processing was performed. The pre-processing steps are described in the following sec-

tions.
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Figure 4.1: Proposed Methodology for generating Bengali captions from the videos.

4.2.1 Video Pre-processing

The videos of the dataset have 30 frames per second (fps). To make the model efficient and

avoid redundancy, we have selected three frames per second on the basis of sampling video

frames once in every ten frames. After this first sampling, the average frame number per

video on the dataset was 31 frames. So, to make all the videos having the same number

of frames as per the requirement of the feature extraction model, we have taken 32 frames

from all the videos by applying the process replication and truncation of frames.

4.2.2 Image Pre-processing

All the frames extracted from the videos are needed to be of uniform dimension for them

to be fed in the feature extraction model. The frames were resized to the dimension of

224x224x3 as per the requirement of the VGG-19 feature extraction model.

Since the feature extraction was done using VGG-19 architecture pre-trained on ImageNet

dataset, normalization was performed using the mean and standard deviation (std) cal-

culated from millions of images of ImageNet dataset. The images were first loaded in

to a range of [0,1] and then normalized using mean = [0.485,0.456,0.406] and std =
[0.229,0.224,0.225].
Here, the mean is the sequence of means for each of the three channels (red, green, blue)

and likewise the std is the sequence of standard deviations for each of the three channels.

Normalization for each channel is calculated by equation 4.1,

input(channel)) = (input(channel)) −mean(channel)))/std(channel)) (4.1)
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Normalization helps the CNN model perform better and gets the data within a range and

reduces the skewness of the data.

4.2.3 Caption Pre-processing

The dataset contains 85,550 English captions, averaging about 43 captions per video. All of

these captions were translated into Bengali using Google Translate API in Python. Due to the

limitations of the API, some of the captions had unwanted noise like containing untranslated

English words on the Bengali caption.

These unwanted noises and also the punctuation marks and other signs were removed from

the Bengali captions. The sentences were then tokenized to create a vocabulary containing

only unique words. Special token like <start>, <end> were added to mark the beginning

and end of the sentence. Token <pad> was included to make all the captions of uniform

length, and the token <unk> was added to detect out of vocabulary representations. The

final vocabulary contains 7,105 unique words after discarding rare words which were used

less than three times in the dataset.

4.3 Feature Extraction

Feature extraction is a part of the dimensionality reduction process. When an input data

to an algorithm or model is too large to be processed, or it is assumed to be redundant,

then it is generally modified into a reduced set of features commonly known as a feature

vector. An essential characteristic of a large dataset is that it has a large number of variables

which require a lot of computational resources to process them. So, feature extraction helps

to acquire and combine the best features from the dataset. It thus effectively reduces the

amount of data but still describe the actual data accurately with originality. The reduction

of data also helps in building the model with less computational effort and at the same time,

increases the speed of learning and generalization steps in the machine learning process.

In our learning model, we have utilized both image and video features. The process of

extracting features from both the images and videos are explained in the later sections.

4.3.1 Image Feature Extraction

Convolutional neural networks are widely used and it is very useful for extracting spatial

features from each of the images taken from the videos. For feature extraction from the

frames, we have used the 19-layer VGG convolutional neural network model. The model

was pre-trained on ImageNet [25] dataset.
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VGG-19 model takes 224x224x3 resized RGB image as input. In convolution layers, the

model uses kernels of size (3 x 3) with a stride of 1 pixel that covers the whole notion

of the image. Convolution layers are followed by Rectified Linear Unit (ReLU) activation

to introduce non-linearity into the model. In between the convolutional layers, there are

pooling layers which use max pooling over a (2 x 2) pixel window with a stride of 2. After

the convolutional layers, there are three fully connected layers which are named as fc6, fc7

and fc8. The first two - fc6 and fc7 have the same dimension of 4096 units. The last fully

connected layer has a dimension of 1000 units.

In our proposed methodology, we took the output of 4096-way fc7 fully connected layer from

VGG-19 model and discarded the last fully connected layer. The last fully-connected layer

with 1000 channels is for 1000-way classification which is followed by a softmax output of

one of the 1000 classes. That is why we discarded the last fully connected layer.

After extracting spatial features from the frames of a video, the dimension of the features

per video becomes (32 x 4096).

4.3.2 Video Feature Extraction

As the videos contain temporal information, only spatial description is not enough to pro-

duce good captions. So, to generate meaningful captions, both visual appearance and tem-

poral information should be leveraged jointly. To extract temporal motion features, we have

employed ResNeXt-101 implementation as the 3D-CNN based feature extraction model. The

model was trained on Kinetics [40] dataset, which includes classes of 400 actions.

The activations of the last convolutional layer (2048 dimensions) of ResNeXt-101 are ex-

tracted as the temporal feature representation for every 16 frames of a video. For any video

longer than 16 frames, they were segmented into non-overlapping 16-frame video snippets,

and their extracted features were combined using max pooling. Here also we have discarded

the last fully connected layer with softmax output used for classification.

After extracting temporal features from the videos, the dimension of the features per video

becomes (1 x 2048).

4.3.3 Caption Embedding

The captions were tokenized, and a vocabulary of unique words was created in the pre-

processing step. These words are represented in the feature space using word embeddings.

Word embeddings are a set of techniques that represents individual words as real-valued

vectors in a predefined vector space. The representation is learned based on the usage of

words. It results in the words which share a lot of similar features to have similar represen-

tations.
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In our proposed methodology, we have used three different word embedding methods. They

are – Word2Vec, FastText and Glove. We have used the implementation and pre-trained

model given by Bengali Natural Language Processing or BNLP toolkit. The models were

trained with Bengali Wikipedia Dump Dataset [41].
After embedding, each word is represented as a 300-dimension feature vector.

4.4 Encoder-Decoder Model

To generate captions from the videos our proposed encoder-decoder framework is composed

of two steps:

1. In encoder, the spatial and temporal features are encoded and combined using Bidi-

rectional Long Short-Term Memory (Bi-LSTM) to generate a context vector.

2. In decoder, the context vector is fed to a two-layer LSTM network that generates the

desired captions.

The steps are comprehensively described in the following sections and the Figure 4.2 shows

the working principle of encoder-decoder model.

4.4.1 Encoder

To encode CNN features extracted from the video frames, Bi-LSTM is used in the encoder.

Bi-LSTM duplicates the first recurrent layer in the network so that there are two layers now

on side-by-side. The extracted features from the frames of videos are fed from beginning to

end as input to the first layer and again from end to beginning to the second layer.

Using Bi-LSTM preserves the context across the frames of a video as at each time step within

the bidirectional architecture, it is possible to see not only the past frames but also take a

look at the future frames. So, the Bi-LSTM architecture encodes the video by scanning

through the whole video several times where each scan is relevant to its subsequent scan.

The output vector of the last cell of the Bi-LSTM model and the extracted feature of the video

by ResNeXt-101 model is then concatenated and passed through a linear layer to generate

a unified context vector. The activation function used here is the Tanh activation function

to keep the values of the context vector within a range of [-1,1]. To reduce the effect of

overfitting, a dropout is also used in the encoder.
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Figure 4.2: Proposed Encoder-Decoder model. In encoder, the extracted features from VGG-
19 are encoded using Bi-LSTM and the output is later concatenated with the extracted fea-
tures from ResNeXt-101 model. In decoder, two-layer LSTM is used which predicts the words
in a sentence given the context vector learnt from the encoder and word embeddings.

4.4.2 Decoder

In the decoder, a two-layer LSTM is used as the language model. With sufficient training

data, LSTM architectures can learn long term dependencies between events and generate

sentences that look like natural sentences. As LSTM operates on sequential data, adding

a second LSTM layer on top of the first layer adds levels of abstraction of input sequences

over time. Additional hidden layers of the stacked LSTM layer recombine the learned rep-

resentations from the previous layer and create new high-level representations. This results

in the overall robustness of the model.

The LSTMs predict the probabilistic distribution of the output caption given the input video

context. Let the context vector is denoted by V. The dictionary of words or vocabulary is

denoted by D. The output sentence can be denoted by the Equation 4.2.

S = {w0, w1, w2, ...., wn}where wi ε D (4.2)

In the sentence, the specially added tokens<start> and<end>which is used for indicating

the beginning and end of a sentence is denoted by and. The probability of the predicted

words of a sentence can be expressed as the following Equation 4.3:
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P(S|V ) = P(w0, w1, w2, ...., wn|V )

= P(w1, w2, ...., wn|V )

=
n
∏

t=1

p(wt |ht−1, lt)

(4.3)

Since the beginning of the sentence is always <start>, the word prediction actually starts

at time step t = 1. At each time step, the LSTM cell calculates the value of hidden layer ht

given the hidden layer value of previous time step h(t−1) and output of the layer below lt .

4.5 Summary

In this chapter, the proposed methodology for Bengali caption generation from input videos

is described with proper diagrams and explanations. Feature extraction and the proposed

encoder-decoder model is thoroughly demonstrated here with a proper diagram and expla-

nation. Detailed pre-processing tasks are highlighted in this chapter. The pre-processing

includes selecting random 32 frames from each video, having an average length of 10 sec-

onds. The video frames or images are resized to 224x224x3 dimensions for the feature

extraction model, VGG-19. For the language generation part, all the captions are translated

to Bengali from English using Google Translate API, and punctuation marks and noises are

removed. 2D CNN-based VGG-19 model and 3D CNN-based ResNeXt-101 model are used

for extracting both spatial and temporal features from the videos, respectively. For word

embedding, three embedding methods, namely, FastText, Glove, and Word2Vec, have been

used. In the encoder and decoder, the sequential model such as Bidirectional Long Short-

Term Memory (Bi-LSTM) and two-layer LSTM are used to generate the captions.
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Chapter 5

Experimental Results & Evaluation

5.1 Overview

In this section, we will describe the outcomes and behaviours of our proposed methodol-

ogy extensively. We approached the video captioning problem as a sequence-to-sequence

(seq2seq) modelling task and used RNNs in both encoder and decoder section. Following,

we will evaluate the performances of all the experiments and compare them. Furthermore,

as there is no pre-existing work on video captioning in Bengali, we will compare our model’s

performance with the existing models of image captioning in Bengali.

5.2 Experimental Setup

We used Jupyter Notebook and various Python packages such as Numpy, Pandas, OpenCV,

H5py, bnltk etc. for image, video and language pre-processing. Image and video features

were extracted from pre-trained models using torchvision.models, a built-in library in Py-

Torch. For training and testing our model, we used PyTorch framework. We used the dedi-

cated GPU, which is provided by Google Colab.

5.3 Dataset Acquisition

For our work, we have used the Microsoft Video Definition (MSVD) dataset [42]. It contains

1970 videos from YouTube of average length of 10 seconds with sentences annotated by AMT

staffs. The dataset has total of 70,028 sentences for 1970 video clips each having multiple

reference captions.

All the captions in MSVD are annotated in English. We translated all the English captions
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to Bengali using Google Translation API. The sentences after translation are not as good

as the human annotations which effects the accuracy of the model.The dataset is divided

into training, testing, and validation set having 1200, 670, and 100 video clips in the sets

respectively.

5.4 Performance Measurement

5.4.1 BLEU

BLEU [43] is a famous metric, very first introduced in 2002, used to measure the quality

of the text generated by the machine. The quality measures the similarity between human

outputs and outputs generated by machines. According to BLEU, a high-scoring description

should correspond in length to the ground-truth sentence such as the exact match of words

as well as their order. BLEU scores take into consideration the similarity between predicted

unigrams (single word) or higher n-gram and a set of reference sentences of one or more

candidates. BLEU evaluation will show ’1’ as an output score when an exact match occurs.

The Equation 5.1 represents the formula of BLEU.

log BLEU = min(1−
lr

lc
, 0) +

N
∑

n=1

ωn log pn (5.1)

In the above equation, lr
lc

is the ratio of the length of the analogous reference corpus, and the

candidate description, ωn are positive weights, and pn indicates to the geometric average

of the modified n-gram precisions.

5.4.2 CIDEr

CIDER [44] was first introduced in 2015 and mostly used for evaluating image caption

quality. It evaluates the consensus of the corresponding image between a predicted sentence

and the reference sentences. Each sentence is treated by CIDEr as a collection of n-grams

containing 1 to 4 words. All the words in a sentence are first converted to their stem or

root. Encode the consensus between the sentence expected and the reference sentence;

it measures the frequency of n-grams co-existing in both sentences. For each n-gram, the

weight is calculated using the Inverse Document Frequency Term Frequency (TF-IDF). Using
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the Equation 5.2 CIDEr score can be computed.

C I DERn(ci, Si) =
1
m

∑

j

(gn(ci)).(gn(si j))

||gn(ci)||.||gn(si j)||
(5.2)

where gn(ci) is a vector representing all n-grams with length n and ||gn(ci)|| depicts the

magnitude of gn(ci). Same is also applicable for gn(si j).

5.4.3 ROUGE

In 2004 ROUGE [45] metric was introduced to determine text summaries. Just like BLEU,

ROUGE is also calculated by varying the count of the n-gram. Unlike precision-based BLEU,

however, ROUGE is based on the recall values. It calculates the recall score of the generated

sentences corresponding to the reference sentences using n-grams. There are different parts

of ROUGE for different works. ROUGE-N measures overlap. It calculates uni-gram, bi-gram,

tri-gram, and higher-order overlap. ROUGE-L measures the longest matching sequence of

words in between two or more strings using LCS. ROUGE-S looks in a sentence for a pair of

words in order. ROUGE-N is computed with the Equation 5.3.

ROGU E − N =

∑

s∈Rsum

∑

gn∈S Cm(gn)
∑

s∈Rsum

∑

gn∈S C(gn)
(5.3)

Here, n being the n-gram length, gn, and Cm(gn) represents the highest amount of n-grams

that are present in the candidate as well as ground truth summaries and RSum stands for

reference summaries.

5.5 Hyper-parameters setting

In this section, different setups based on hyper-parameter values are discussed. These in-

formation are depicted in the Table 5.1:

Table 5.1: Uniform Hyper-parameters for all the setups

Hyper-parameter Value
Batch_size 500

Step_per_epoch 99
Epoch 50

Momentum 0.0
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We experimented on four different setups by tuning the hyper-parameters, whose details

are given in the Table 5.2:

Table 5.2: Hyper-parameter values for different setups

Setup
Encoder

Hidden Size
Encoder
Dropout

Decoder
Hidden Size

Decoder
Dropout

Word Embedding
Dimension

Learning
Rate

Setup-1 300 0.2 300 0.4 300 0.0005
Setup-2 500 0.2 500 0.4 500 0.005
Setup-3 1000 0.1 1000 0.5 1000 0.0002
Setup-4 1500 0.2 1500 0.4 1500 0.00005

5.6 Experimental Result

In this section, we will discuss the experimental result of the proposed methodology. We

extracted Bengali word embedding from pre-trained FastText, Word2vec and Glove model.

Each of them represents a word by a 300-dimensional vector. We expanded the dimension

as a hyper-parameter by a linear layer and fine-tuned it. The following subsections describe

the results thoroughly.

5.6.1 Experiments using FastText

In Table 5.3, we have shown the performance of four different setups while using the Fast-

Text model for word vectors. We found that, versions of BLEU metrics obtained better score

than other metrics for setup-1. CIDEr and ROUGE worked better with setup-3 and showed

better scores.

Table 5.3: Performance scores of models with FastText embedding on test data

Setup BLEU-3 BLEU-4 CIDEr ROUGE
Setup-1 0.321 0.223 0.276 0.47
Setup-2 0.262 0.217 0.09 0.415
Setup-3 0.308 0.221 0.324 0.496
Setup-4 0.252 0.06 0.08 0.35

Figure 5.1 shows the validation set results for evaluation matrices over the iterations for

setup-3 over 50 epochs. From the graphs, ROUGH stands out to be the highest validation

accuracy achiever by far. We can see highest fluctuations in validation accuracy through out

the 50 epochs.

In Figure 5.2, a representation of loss curve of the model for setup-3 using FastText embed-

ding on training set is depicted.
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(a) Validation for BLEU-3 (b) Validation for BLEU-4

(c) Validation for CIDEr (d) Validation for ROUGE

Figure 5.1: FastText Setup-3 Validation Accuracy Curves

Figure 5.2: Model Loss Curve for FastText embedding with setup-3
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5.6.2 Experiments using Word2vec

In Table 5.4, we have shown the performance of four different setup while using the Word2vec

model for word vectors. Setup-3 outperformed other setups and got the highest value in all

four evaluation matrices.

Table 5.4: Performance scores of models with Word2vec embedding

Setup BLEU-3 BLEU-4 CIDEr ROUGE
Setup-1 0.286 0.220 0.314 0.502
Setup-2 0.273 0.231 0.112 0.438
Setup-3 0.432 0.326 0.512 0.573
Setup-4 0.288 0.185 0.276 0.493

Figure 5.3 shows the validation set results for evaluation matrices over the iterations for

setup-3 using Word2vec embedding model.

(a) Validation for BLEU-3 (b) Validation for BLEU-4

(c) Validation for CIDEr (d) Validation for ROUGE

Figure 5.3: Word2vec Setup-3 Validation Accuracy Curves
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In Figure 5.4, a representation of loss curve of the model for setup-3 using Word2vec em-

bedding on training set is depicted.

Figure 5.4: Model Loss Curve for Word2vec embedding with setup-3

5.6.3 Experiments using Glove

In Table 5.5, we have shown the performance of four different setup while using the Glove

model for word vectors. We found that, BLEU-3 and BLEU-4 achieved better score than

other metrics for setup-3 and setup-2 respectively. CIDEr and ROUGE also worked better

with setup-3 and showed better scores. So, setup-3 acquired better results in almost all the

evaluation metrics (BLEU-3, CIDEr, ROUGE).

Table 5.5: Performance scores of models with Glove embedding

Setup BLEU-3 BLEU-4 CIDEr ROUGE

Setup-1 0.246 0.218 0.253 0.458

Setup-2 0.286 0.245 0.124 0.445

Setup-3 0.314 0.237 0.359 0.502

Setup-4 0.273 0.153 0.196 0.424

Figure 5.5 shows the validation set results for evaluation matrices over the iterations for

setup-3 using Glove embedding model.

In Figure 5.6, a representation of loss curve of the model for setup-3 using Glove embedding

on training set is depicted.
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(a) Validation for BLEU-3 (b) Validation for BLEU-4

(c) Validation for CIDEr (d) Validation for ROUGE

Figure 5.5: Glove Setup-3 Validation Accuracy Curves

Figure 5.6: Model Loss Curve for Glove embedding with setup-3
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5.7 Performance Comparison

We compared the variants of our proposed model on the basis of training time and accuracy.

In Figure 5.7, a bar chart of avg. time required per epoch by the models is shown. Setup-1

and Setup-2 required less time because of their smaller hidden sizes in the encoder and

decoder. On the other hand, Setup-3 and Setup-4 is relatively large in terms of parameters,

as their encoder, decoder hidden sizes are of 1000 and 1500 dimensions respectively as

well as their embedding dimension. Setup-4 for the Glove model took almost 3.33h per

epoch, which is the highest among all. Setup-1 of the Word2vec model trained faster with

the lowest time required of avg. 1.05h per epoch.

Figure 5.7: Average Training Time for different model setup

Bar chart in Figure 5.8 compares the BLEU-3 scores acquired by the models on test set.

The scores varied in a small range of 24% - 32% for most of the models while Setup-3 of

Word2vec outperformed with a large margin by getting 43.2%.

Figure 5.8: Comparison of BLEU-3 scores
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Comparison of BLEU-4 is represented in Figure 5.9 which shows that first three setups of

FastText model scored nearly 22%, whereas the fourth model struggled with the lowest

accuracy of 6%. Almost similar performance was shown by the Glove models with setup-4

being the lowest. In case of Word2vec models, setup-3 retained its top position by scoring

the highest 32.6%.

Figure 5.9: Comparison of BLEU-4 scores

Figure 5.10, depicts the comparison for ROUGE scores which are almost uniform with slight

deviations. Here also the setup-3 of word2vec model scored the most. It obtained 57.3%.

Figure 5.10: Comparison of ROUGE-l scores

CIDEr score comparison is presented in the bar chart of Figure 5.11. Unlike the ROUGE

scores, a diversity is observed in case of CIDEr. Setup-1 and setup-3 from all three embed-

ding models performed well in this matrix. Setup-3 of Word2vec scored the highest 51.2%

and topped in all four evaluation matrices.
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Figure 5.11: Comparison of CIDEr scores

5.8 Performance comparison Between the existing Image

Captioning Model and the proposed model

In this section, we will do a comparison among the existing Bengali Image captioning models

and our proposed methodology for video captioning as there is no existing work on Bengali

Video Captioning. Table 5.6 illustrated the cpmparison between the existing models and

our models.

Table 5.6: Performance comparison with the existing Image Captioning models and the
proposed model

Paper Image Dataset BLEU 3 BLEU 4 CIDER ROUGEl

Proposed Model 43.2 32.6 51.2 57.3

[5] BNLIT 32.4 22.8 - -

[6] BanglaLekhaImageCaptions 31.7 23.8 - -

[7] Flickr8k-BN 33.0 22.0 46.0 54.0

5.9 Qualitative Assessment

In this section, we have presented some pictorial examples (Figure 5.12) of reference and

generated sentence of our best performing model, which is Word2vec setup-3 from the test

set.
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(a)

(b)

(c)

(d)

Figure 5.12: Examples of Captions Generated by Our Proposed Model
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In Figure 5.12, the example 5.12a and 5.12b show that the generated captions are very

similar to the reference captions. The context of the images are captured very well. In

5.12c, the generated captions are somehow related, but not similar. The context is not

properly captured by the model, so action of the main objects are not described properly.

generated captions in the last example, 5.12d are completely irrelevant. So, our proposed

model struggles with caption generation when the actions in the video are complex.
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Chapter 6

Limitations & Future Works

We tried to contribute to the field of Bengali video captioning which is yet untouched as

their is only one research work [46] available on video captioning in Bengali. So, there is

no chance of having a look at the previous works on video caption generation in Bengali.

Despite of very limited resources, we developed a model that can generate captions from

input videos in Bengali leaving us with some success and some limitations. This chapter

discusses about the limitations and way of solving the limitations in future works.

6.1 Limitations

There are some limitations of our model for Bengali video captioning.

• The generated captions of the model is has low accuracy. The model can not handle

complex visual information in the videos.

• The decoder portion of the model gets short context vector from a single video as

input in order to generate the caption which leads to lack of knowledge of the whole

context information.

• There is no available dataset with captions in Bengali. So, the captions are translated

to Bengali from English using Google Translation API which is not up to mark com-

pared to human translation. This lack of proficiency in language translation leads to

improper captioning.

• The model is computationally expensive. In simple words, it takes a long time to train

the whole model.
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6.2 Future Works

There are some works which can be done in future to upgrade this system to next level.

• Attention mechanism can be used to generate Bengali captions with more accuracy,

as attention mechanism can generate captions depending on the whole context.

• Video captioning can not explain the whole perspective of the video clips. So, this

model can be upgraded to generate paragraph representing the descriptions of the

video. In simple words, rather than generating single sentences, the model should be

upgraded to generate multiple sentences.

• A large video dataset can be prepared with multiple Bengali captions for better works

in future.

• Including our model, every language model struggles with Bengali complex words

and confusing meanings. Resolving all these problems are very important to generate

meaningful Bengali captions.
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Chapter 7

Conclusion

The field of computer vision is vast, and video captioning works need many improvements.

Most of the works regarding video captioning are in the English language. Our works con-

tribute to the task of Bengali video captioning, which has hardly been scratched. There are

almost no previous works available, which we had to overcome by gathering knowledge

from works regarding video captioning in English. Research works on image captioning in

Bengali also help us developing our model. After video and image pre-processing, spatial

features are extracted using VGG-19, which is a 2D CNN-based model. Temporal features

are extracted using a 3D CNN model, ResNeXt-101. For word embedding, FastText, Glove,

and Word2Vec are used. In the encoder and decoder, the sequential model such as Bidirec-

tional Long Short-Term Memory (Bi-LSTM) and two-layer LSTM are used to generate the

captions.

We faced problems with the dataset as there is no video dataset available for Bengali video

captioning. We solved this problem by translating the available captions in Bengali with

Google Translation API in python and encountered another problem regarding the accuracy

of the translations as they are not as accurate as human-level translation. We will try to

improve the model, as well as prepare a better dataset for further works, which will bring

better and precise results.
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